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Real-space orthogonal projector-augmented-wave method

Wenfei Li and Daniel Neuhauser
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA

(Received 28 July 2020; revised 28 September 2020; accepted 20 October 2020; published 11 November 2020)

The projector-augmented-wave (PAW) method of Blöchl makes smooth but nonorthogonal orbitals. Here we
show how to make a PAW orthogonal using a cheap transformation of the wave functions. We show that the
resulting orthogonal PAW (OPAW), applied for density functional theory, reproduces (for a large variety of
solids) band gaps from the ABINIT package. OPAW combines the underlying orthogonality of norm-conserving
pseudopotentials with the large grid spacings and small energy cutoffs in PAW. The OPAW framework can also
be combined with other electronic structure theory methods.
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I. INTRODUCTION

A plane-wave basis set is natural when studying periodic
systems with density functional theory (DFT) and post-DFT
methods. Convergence with the basis set is simply verified
by increasing a single parameter, the kinetic energy cutoff.
However, due to the fast oscillation of atomic core states,
a direct all-electron treatment is prohibitive. One way to
circumvent this problem is to replace the effect of the chem-
ically inert core states by an effective pseudopotential, and
the resulting pseudo valence states are nonoscillatory [1,2].
DFT using pseudopotentials and a plane-wave basis set has
therefore become one of the most popular choices in com-
putational chemistry and materials science. However, despite
the formal simplicity of norm-conserving pseudopotentials
(NCPPs), treatment of first-row elements and transition metals
is still computationally demanding due to the localized nature
of 2p and 3d orbitals [3–5].

The projector-augmented wave (PAW) method proposed
by Blöchl [6–9] seeks to make softer pseudo wave functions
by relaxing the norm-conserving condition. There are several
different implementations of the PAW method (e.g., [10–13])
with many successful applications.

In addition to the reduced kinetic energy cutoff, an ad-
vantage of the PAW method is that it provides a means for
recovering the all-electron orbitals, and these orbitals pos-
sess the right nodal structures in the core region. Therefore,
PAW enables the calculation of quantities such as hyperfine
parameters, core-level spectra, electric-field gradients, and the
NMR chemical shifts, which rely on a correct description of
all-electron wave functions in the core region [14].

The PAW method is based on a map between the smoothed
pseudo wave functions {ψ̃m} and the all-electron wave func-
tions {ψm}. Unlike NCPPs, where the wave functions retain
their orthogonality, the pseudo wave functions in PAW satisfy
a generalized orthogonality condition,

〈ψ̃m|Ŝ|ψ̃n〉 = δmn, (1)

which leads to a generalized eigenproblem, H̃ψ̃m = εmŜψ̃m,
where we introduced the one-body Hamiltonian H̃ and over-
lap operator Ŝ (both detailed later).

However, the fact that the pseudo-orbitals are not or-
thogonal complicates the use of PAW for applications
that rely on the orthogonality of molecular orbitals. These
include some post-DFT methods, as well as several lower-
scaling DFT methods, including the modified deterministic
Chebyshev approach (see, e.g., [15]) or stochastic DFT
methods [16,17], which are able to handle a large num-
ber of electrons (potentially hundreds of thousands for the
stochastic approach) by filtering a function of an orthogonal
Hamiltonian.

Here we solve the nonorthogonality problem by an efficient
numerical transformation of the PAW problem to an orthogo-
nal one,

(Ŝ− 1
2 H̃ Ŝ− 1

2 )ψ̄m = εmψ̄m, (2)

with ψ̄m = Ŝ1/2ψ̃m forming an orthogonal set, with the same
norm as the all-electron orbitals (to be proved later). The key
is that we show how to numerically apply the Ŝ−1/2 (or Ŝ−1)
operator efficiently, without significantly raising the cost of
applying the Hamiltonian.

The resulting approach retains one of the desirable fea-
tures of NCPP, orthogonality of molecular orbitals, and we
therefore label it orthogonal PAW (OPAW). In addition to or-
thogonality, OPAW is also efficient because it is implemented
in real space, exploiting the localization of atomic projector
functions and partial waves [12,13].

OPAW provides a general framework and can be combined
with different electronic structure methods. Here we apply
the method with the Chebyshev-filtered subspace iteration
(CheFS) DFT approach, concentrating on the fundamental
band gap of solids. We show below excellent agreement
with PAW calculations from the ABINIT package [11,18].
We also demonstrate that for many systems, PAW and
OPAW band gaps converge with energy cutoff faster than
NCPPs.

Section II presents the OPAW theory. Results are presented
in Sec. III, and conclusions follow in Sec. IV. Technical de-
tails are deferred to the Appendixes.
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II. THEORY

A. Orthogonal projector augmented wave

The basic relation in PAW is a map T̂ yielding the true
molecular eigenstates ψm from the smoother pseudo-orbitals,

|ψm〉 = T̂ |ψ̃m〉 ≡ |ψ̃m〉 +
∑
a,i

(∣∣φ(a)
i

〉 − ∣∣φ̃(a)
i

〉)〈
p(a)
i

∣∣ψ̃m
〉
, (3)

where a is the atom index and i runs over all the partial
wave channels (a combination of principal, angular momen-
tum, and magnetic quantum numbers) associated with each
atom; φ

(a)
i and φ̃

(a)
i are a true atomic orbital and a smoothed

version which matches φ
(a)
i outside a small sphere around the

atom (labeled the augmentation region). The atomic projec-
tors {p(a)

i } are localized in the augmentation region and are
built to span the space within each augmentation sphere, i.e.,∑

i |φ̃(a)
i 〉〈p(a)

i | � 1, in the sphere.
With some derivations, one arrives at the working equation

of PAW, the generalized eigenproblem H̃ψ̃m = εmŜψ̃m, where

Ŝ ≡ T̂ †T = I +
∑
i j,a

∣∣p(a)
i

〉
s(a)
i j

〈
p(a)
j

∣∣, (4)

with s(a)
i j ≡ 〈φ(a)

i |φ(a)
j 〉 − 〈φ̃(a)

i |φ̃(a)
j 〉, and

H̃ = −∇2

2
+ νKS (r) +

∑
i j,a

∣∣p(a)
i

〉
D(a)

i j

〈
p(a)
j

∣∣. (5)

The expressions for the Kohn-Sham effective potential
νKS (r) and for D(a)

i j are found in various references [6,11].

While s(a)
i j are only atom dependent, νKS (r) and D(a)

i j both

depend on the on-site PAW atomic density matrices: ρ
(a)
i j =∑

m〈p(a)
j |ψ̃m〉〈ψ̃m|p(a)

i 〉, as well as the smooth density ñ(r) =∑
m |ψ̃m(r)|2 and the sum extends over the occupied states.

The on-site atomic density matrices and the smooth den-
sity are the key components in PAW and together with the
atomic information govern the updated quantities in each self-
consistent field (SCF) cycle.

In many applications, however, it is desirable to work with
an orthonormal collection of wave functions. As mentioned in
the Introduction, this can be achieved by the transformation

ψ̄m = Ŝ1/2ψ̃m, (6)

resulting in

H̄ψ̄m = εmψ̄m, (7)

where H̄ = Ŝ− 1
2 H̃ Ŝ− 1

2 .
As an example, in Fig. 1 we show three-dimensional (3D)

isosurfaces of ψ , ψ̄ , and ψ̃ for the 2pz orbital from a cal-
culation of a single oxygen atom, as well as the associated
one-dimensional (1D) radial part obtained by projecting the
3D orbital to 1D. The three orbitals differ only in the core
region; ψ clearly has more structure in the core, while the
oscillatory features are attenuated or absent in ψ̄ and ψ̃ . Fur-
thermore, the magnitudes of ψ̄ and ψ̃ are smaller than those
of ψ .

FIG. 1. Isosurfaces (top) and radial parts (bottom) of ψ , ψ̄ , and
ψ̃ for the 2pz orbital of a single oxygen atom. In the isosurface
plot, blue color indicates positive value and yellow indicates negative
value.

1. Obtaining Ŝ−1/2

An efficient implementation of OPAW thus requires fast
application of Ŝ−1/2. For simplicity, we first consider the case
where the augmentation spheres from different atoms do not
overlap, so 〈p(a)

i |p(a′ )
j 〉 = 0 if a �= a′. Therefore we can sepa-

rately rotate the {p(a)
i } projectors around each atom so that Ŝ

is transformed into

Ŝ = I +
∑
i,a

∣∣η(a)
i

〉
o(a)
i

〈
η

(a)
i

∣∣, (8)

where the rotated projectors {η(a)
i } are orthogonal and satisfy

〈η(a)
i |η(a′ )

j 〉 = δi jδa,a′ (see Appendix A). With this transforma-

tion, any power of Ŝ is easily expressed, e.g.,

Ŝ− 1
2 = I +

∑
j,a

∣∣η(a)
j

〉[(
1 + o(a)

j

)− 1
2 − 1

]〈
η

(a)
j

∣∣. (9)

Since each |η(a)
j 〉〈η(a)

j | is a projection operator (and all such
operators are orthogonal), the proof of Eq. (9) becomes a
trivial quantum mechanics exercise emanating from the sim-
ple equation [I + (a − 1)P]m = I + (am − 1)P, when P is a
projection operator.

Next, note that the transformation operator between the
orthogonal smooth molecular orbitals and the true ones is
unitary,

∣∣ψ (a)
i

〉 = Û
∣∣ψ̄ (a)

i

〉
, Û = T̂ Ŝ− 1

2 , (10)

so Û †Û = I. Due to the unitarity, the norm of the true molec-
ular orbitals and the orthogonal smooth ones is identical, as
mentioned.

Overall, we note that except for the automatic orthogo-
nality, the algorithm is identical to the usual PAW. In an
SCF cycle, with a given one-body Hamiltonian the orthog-
onal molecular orbitals [the solutions of Eq. (7)] are first
found; then we transform to the nonorthogonal orbitals,
ψ̃i = Ŝ−1/2ψ̄i, using Eq. (9), and use the usual prescription
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TABLE I. Calculated band gaps of SiO2 at different grid spac-
ings. The Si atom PAW wave-function input data set based on GGA
calculations has originally o1 = −1.005, which was modified to
o1 = −1 + δ; different choices of δ give essentially the same results
(or slightly different for the largest δ), as does an analogous input file
built based on LDA calculations where o1 > −1. Note, of course,
that with both data sets we did the same overall GGA (i.e., PBE)
calculation; the difference was only in the PAW input functions.

Grid spacing (Bohr) 0.34 0.37 0.40 0.46
Gap (eV), LDA PAW 5.97 5.97 5.94 5.85

Gap (eV), GGA PAW δ = 0.003 5.97 5.97 5.94 5.85
δ = 0.01 5.97 5.97 5.94 5.85
δ = 0.05 5.95 5.95 5.92 5.83

of the PAW algorithm to update vKS (r),D(a)
i j in the PAW

Hamiltonian.
Finally, note that the assumption of nonoverlapping aug-

mentation spheres is quite accurate, as shown in a latter
section by the agreement between our results and ABINIT.
Nevertheless, it is not exact; we could go beyond it by view-
ing our expression for Ŝ− 1

2 as a preconditioner, as shown in
Appendix B, and this will be pursued in further publications.

2. Avoiding singularities

The one caveat in Eq. (9) is the formal singularity when
any of the o(a)

i is close to or below −1. Fundamentally, a
value of o(a)

i = −1 indicates that the Ŝ operator projects out
the subspace spanned by |η(a)

i 〉o(a)
i 〈η(a)

i |.
For a start, note that negative values of o(a)

i between -1
and 0 do not pose mathematical difficulties in our formulation
but could indicate problems in the construction of the PAW
parameters and in the eventual implementation, depending on
the PAW code used (although they work fine in the ABINIT

code used by us); see Ref. [19] for details.
In practice, for most atoms we tested, o(a)

i were well
above −1. We did encounter one case where oi is very
close to −1—the GGA PAW parametrization of silicon taken
from the website of the ABINIT PAW code [20,21], where
o(Si)

1 = −1.005. Fortunately, the problem is trivially circum-
vented by replacing o(a)

1 by max(o(a)
1 ,−1 + δ), where δ is a

small positive number. The results are insensitive to δ. For
example, for SiO2 we tested (see Table I) three different
choices, δ = 0.003, 0.01, and 0.05. The two lower values
of δ gave results that agree completely with those using
the local density approximation (LDA) PAW file taken from
the ABINIT website [20,22], where o1 was higher than −1.
Even the large shift parameter, δ = 0.05, led to only a slight
deviation.

We also note that numerical problems could also arise from
the compensation charge being negative. A solution to this
problem is discussed in the literature [19,23].

B. Application of OPAW in DFT and technical details

The OPAW algorithm is general and can be applied with
any technique requiring an orthogonal Hamiltonian. Before
talking about implementation of OPAW in DFT, note that

a real-space implementation of OPAW will require the in-
ner product between atomic projectors and wave functions:
〈p(a)

i |ψ̄〉. Such inner products are involved in determining the
density matrices ρ

(a)
i j , as well as applying the operators H̃ and

Ŝ. In a real-space formalism, the smooth wave functions ψ̄ are
defined on a 3D grid. For computational efficiency, as long as
the accuracy of the results is not affected, the grid spacing for
ψ̄ should be made as large as possible. On the other hand,
the projector functions are short ranged and in general show
larger variation than the wave functions, so that evaluating the
inner product directly on a coarse 3D grid would lead to large
numerical errors.

To solve this problem, we adopted the method of Ono and
Hirose [24], which connects the grid of the system with a
set of finer grid points around each atom. Technical details
regarding the Ono-Hirose method are given in Appendix C.

With a real-space implementation of OPAW in hand, we
applied it along with the Chebyshev-filtered subspace iteration
(CheFS) technique [15], resulting in an efficient DFT program
(OPAW-DFT). The idea of CheFS is described in Appendix D,
along with a summary of the algorithm in Appendix E.

Furthermore, since we are working with periodic systems,
we did k-point sampling. A brief account of using k-point
sampling with OPAW is supplied in Appendix F.

III. RESULTS AND DISCUSSION

A. Computational details

We did a set of calculations for periodic solids and re-
port the calculated fundamental band gap. The geometries are
taken from the ICSD database [25]. A 4×4×4 k-point mesh
was used for each system.

We used the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA) functional in all calculations.
For all calculations, the cutoff energy for the plane-wave basis
set Ecutoff is related to the density cutoff energy by Edensity

cutoff =
4Ecutoff , as is typical in plane-wave calculations. Note that the
latter is related to the grid spacing for the density by Edensity

cutoff =
1
2 ( π

dx )2. Thus, as usual, the grid used for the density is twice
as dense (in each direction) than the spatial grid for the plane
waves.

As mentioned, to assist the SCF convergence we applied
a direct inversion of the iterative subspace (DIIS) proce-
dure [26,27] when updating νKS (r). At times we have also
applied a DIIS procedure for the Hamiltonian Di j terms to
assist SCF convergence.

For PAW calculations, we used the recommended atomic
datasets from the ABINIT website [20]. There are two excep-
tions: the Sc atom, where the Di j terms were large, more
than 40 Hartree, and the Sr atom, where the Di j terms exceed
1000 Hartree. In both cases this is due to a mismatch of the
shape of the smooth and true atomic orbitals in the second,
outer, d shell. To simplify, we therefore generated new PAW
potentials for Sc and Sr from the ATOMPAW package [23]
using only one d shell. For NCPP calculations, we used the
recommended pseudopotentials from the ABINIT website [28].
More information on the PAW and NCPP datasets can be
found in Supplemental Materials [29].
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FIG. 2. Band gap vs energy cutoff for NaCl, with three methods:
OPAW-DFT, ABINIT-PAW, and ABINIT-NCPP. For all the shown cut-
off energies, except the lowest one, the OPAW-DFT and ABINIT-PAW
results completely overlap on the scale of this graph.

B. Results

Overall, DFT calculations produce two types of informa-
tion. The first is forces and total energy, important for binding
and molecular dynamics. Here we concentrate on the second
type of output from DFT: orbital energies and states, and here
specifically the DFT highest and lowest occupied molecular
orbital (HOMO and LUMO, respectively) gap. The DFT gap
often serves as a preliminary approximation to the actual
fundamental band gap [30], and the Kohn-Sham orbitals and
their energies are the basic ingredients for most beyond-DFT
methods. Future papers will also examine the total energy
and forces with OPAW, as well as the shape of the band
structure.

We first examine the band-gap convergence with energy
cutoff for an NaCl solid. We compared OPAW-DFT with
ABINIT simulations using PAW or NCPP. The results are
shown in Fig. 2. For NaCl, our OPAW-DFT successfully re-
produced the ABINIT results. Furthermore, the two PAW-based
methods show better convergence with grid spacing than the
NCPP-based method.

Second, we report the calculated fundamental band gap
of a series of solids. A comparison of the converged results
from ABINIT-PAW and OPAW-DFT is shown in Table II. We
also present the reference value from the work of Borlido
et al. [31]. The results indicate that OPAW-DFT reproduces
ABINIT-PAW for a wide variety of systems, using generally
the energy cutoff in ABINIT (with the advantage that in real
space we use the localization of the projector functions, so the
cost of applying the Hamiltonian on a single function scales
linearly with the size of the system).

The table shows that for most solids both OPAW and
ABINIT-PAW outperform NCPP, sometimes dramatically; e.g.,
for SiO2, the energy cutoff required for converging the band
gap is 15 Hartree for the two PAW-based methods and 29
Hartree for ABINIT-NCPP calculation; for InP the difference
is even more dramatic.

To visualize the improvement in cutoff energy required for
converging the fundamental band gap of solids to less than
0.05 eV, we use histograms in Fig. 3. The figure shows that

TABLE II. Calculated fundamental band gaps (in electronvolts)
of selected solids. The values are reported along with the plane-wave
cutoff (in Hartree) required for for a 0.05-eV gap convergence. The
reference calculations use PAW in VASP [31].

OPAW- ABINIT- ABINIT- Ref.
DFT PAW NCPP [31]

System Gap Ecut Gap Ecut Gap Ecut Gap

NaCl 5.09 11 5.10 11 5.07 25 5.10
CaO 3.65 13 3.64 13 3.66 19 3.63
PbS 0.31 9 0.29 9 0.34 16 0.30
InP 0.68 10 0.65 10 0.69 23 0.71
Si 0.63 7 0.63 7 0.61 7 0.62
SiO2 5.99 15 5.97 15 6.00 29 6.02
ScNiSb 0.28 17 0.25 15 0.29 34 0.30
NiScY 0.31 14 0.28 14 0.31 20 0.30
LiH 2.97 10 2.97 12 2.99 19 3.00
KBr 4.33 8 4.33 7 4.34 18 4.36
K3Sb 0.75 8 0.74 5 0.75 6 0.77
CaCl2 5.41 10 5.42 13 5.40 20 5.43
BN 4.46 18 4.45 24 4.53 34 4.45
BaCl2 5.04 8 5.04 8 5.05 10 5.03
Ar 8.70 9 8.69 11 8.70 10 8.71
AlP 1.58 9 1.57 9 1.58 12 1.58
SrO 3.30 13 3.30 13 3.32 13 3.26

PAW gives excellent results with cutoff energies that can be
as low as 7 Hartree and are generally (in the examples we
studied) below 20 Hartree.

Finally, we note that in some approaches, for example,
stochastic methods for DFT, time-dependent DFT (TDDFT),
GW, and Bethe-Salpeter [16,17,32–36], the numerical cost is
related directly to the number of spatial grid points rather
than the number of plane waves; in those cases a choice of
Edensity

cutoff = Ecutoff (rather than 4Ecutoff ) is better. The analog
of Table II and Fig. 3 for this choice can be found in the
Supplemental Material [29]. On average the Edensity

cutoff required
when Edensity

cutoff = Ecutoff is much smaller than that required
when using Edensity

cutoff = 4Ecutoff (as done above), i.e., setting
Edensity

cutoff = Ecutoff allows a much sparser real-space grid.

IV. CONCLUSIONS

The results in the previous section show that our efficient
OPAW reproduces traditional PAW. The OPAW algorithm is
easy to implement and combines the best of both worlds: the
lower cutoff energy typically enabled by PAW and the orthog-
onality of norm-conserving pseudopotential approaches.

With the efficient methodology for acting with the Hamil-
tonian and overlap/inverse overlap, i.e., the simple application
(on any function f ) of Ŝ f , Ĥ f Ŝ−1 f , Ŝ− 1

2 f , and Ŝ− 1
2 H̃ Ŝ− 1

2 f ,
we can combine PAW with other electronic structure theory
methods, including our linear scaling stochastic TDDFT and
GW methods [32–34], opening the door to significant (in
some cases an order of magnitude) improvements in overall
grid size and the reduction of the spectral range, potentially in-
cluding even larger improvements in the cost of beyond-DFT
approaches. Finally, we note that an example where some of
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FIG. 3. Histogram of converged plane-wave cutoff for the solids
in Table II, from (a) ABINIT-PAW, (b) OPAW-DFT, and (c) ABINIT-
NCPP calculations.

the developments here were applied is our recent large-scale
stochastic long-range exchange method for TDDFT using
PAW [35].
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APPENDIX A: TRANSFORMATION THROUGH Ŝ

We start by a proof of Eq. (1). Since the molecular or-
bitals are orthogonal, 〈ψi|ψ j〉 = δi j, and since |ψi〉 = T̂ |ψ̃i〉,

it follows that 〈ψ̃i|T̂ †T̂ |ψ̃i〉 = δi j, which, given the definition
Ŝ ≡ T̂ †T , yields Eq. (1). In the remainder we discuss the
technical details of the transformation.

Given the initial operator

Ŝ = I +
∑
i j,a

∣∣p(a)
i

〉
si j

〈
p(a)
j

∣∣, (A1)

the first step is to orthonormalize the projectors. For each
atom define a projector overlap matrix L(a)

i j = 〈p(a)
i |p(a)

j 〉 and
diagonalize it: L(a) = U (a)λ(a)U (a)†, with U (a) unitary. Then
define a new set of projectors {ξ (a)

i },
∣∣ξ (a)

i

〉 = 1√
λ

(a)
i

∑
j

U (a)
ji

∣∣p(a)
j

〉
, (A2)

that will be orthogonal, 〈ξ (a)
i |ξ (a)

j 〉 = δi j . Inverting Eq. (A2)
and substituting into Eq. (A1) then gives

Ŝ = I +
∑
kl,a

∣∣ξ (a)
k

〉
O(a)

kl

〈
ξ

(a)
l

∣∣, (A3)

where O(a) =
√

λ(a)U (a)s(a)U (a)†
√

λ(a).
The next step involves diagonalization of the matrix O(a),

as O(a) = Q(a)o(a)Q(a)†, with Q(a) unitary. It then readily fol-
lows that

Ŝ = I +
∑
i,a

∣∣η(a)
i

〉
o(a)
i

〈
η

(a)
i

∣∣, (A4)

where |η(a)
i 〉 = ∑

l Q
(a)
li |ξ (a)

l 〉 are also orthogonal due to the
unitarity of Q(a). (Note that a diagonal representation of pro-
jectors is also done in NCPP, where diagonal projectors are
used in representing the nonlocal potential [5].)

Finally, when we apply the Ono-Hirose procedure, the bare
η

(a)
i are replaced by the processed ones, η̄

(a)
i , as in Eq. (C3),

i.e.,

Ŝ = I +
∑
i,a

∣∣η̄(a)
i

〉
o(a)
i

〈
η̄

(a)
i

∣∣. (A5)

These are not orthogonal on the rough grid surrounding each
molecule. We therefore repeat the orthogonalization proce-
dure, Eqs. (A1)–(A4), with the overlap matrix L(a) now being
replaced by L̄(a)

i j = dv
∑

r η̄
(a)
i (r)η̄(a)

j (r), leading eventually to

Ŝ = I +
∑
i,a

∣∣ζ̄ (a)
i

〉
ō(a)
i

〈
ζ̄

(a)
i

∣∣, (A6)

where ζ̄
(a)
i are orthogonal on the rough grid, 〈ζ̄ (a)

i |ζ̄ (a)
j 〉 = δi j .

APPENDIX B: GOING BEYOND THE NONOVERLAPPING
AUGMENTATION SPHERES ASSUMPTION

In this Appendix we show how one could go beyond the
nonoverlapping augmentation sphere assumption. Let us con-
sider for simplicity expressions using Ŝ−1 rather than Ŝ− 1

2 .
Then the generic relation Ŝψ = Hξ (the inversion of which
is the crucial step in a Chebyshev propagation that iterates
Ŝ−1H) can be rewritten as

(I + B̂)ψ = ξ ′, (B1)
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where ξ ′ ≡ Ŝ−1
NOHξ, and

B̂ ≡ Ŝ−1
NOŜ − I, (B2)

while Ŝ−1
NO is a nonoverlapping (NO) expression for Ŝ−1, as in

Sec. II A,

Ŝ−1
NO = I +

∑
J

(oJ + 1)−1 − 1]PJ , (B3)

and we use the abbreviated notation from there (but without
assuming that different PJ are orthogonal). Note that this Ap-
pendix is the only place in the paper where we give an explicit
subscript (NO) to expressions obtained under the nonoverlap-
ping assumption.

Equation (B1) could be solved by a Taylor expression
in B, which measures the deviation from the nonoverlapping
spheres assumption. Recall that our results, obtained essen-
tially by assuming that B = 0, are all quite accurate. Therefore
even a single Taylor term should be extremely accurate, i.e.,

ψ = (I − B̂)ξ ′ = (
2I − Ŝ−1

NOŜ
)
Ŝ−1
NOHξ, (B4)

and as a reminder the definitions of the terms here come from
Eqs. (4), (5), and (B3). This expression would not be much
more expensive than the B = 0 expression we used throughout
the rest of the paper (ψ = Ŝ−1

NOHξ ), since it only differs in the
use of further overlaps.

APPENDIX C: THE ONO-HIROSE TRANSFORMATION
WITH A SPLINE METHOD AND ITS

IMPLICATIONS IN OPAW

The method of Ono and Hirose [24] is used to connect,
for each atom, two sets of local grids. (The grids are specific
to each atom, but for brevity we omit the atomic label in the
following derivations.) One is a “rough grid” Xr , consisting
of a small cubic region of the 3D wave-function grid, which
encloses the augmentation sphere for the specific atom. The
second is a “fine grid” X f , spanning the same volume but with
more grid points and smaller grid spacing.

The overlap of the wave functions and projectors should
formally be performed on the fine grid. This requires, for-
mally, interpolating the wave function from the rough grid
(i.e., ψ (r), r ∈ Xr) to the fine grid, as

ψ (r f ) =
∑
r∈Xr

B(r f , r)ψ (r), (C1)

where B(r f , r) is a linear projection matrix. Earlier ap-
plications of the Ono-Hirose approach usually used cubic
fitting [12,13,24], but here we used a spline fit.

The key observation of the Ono-Hirose approach is then
that the fine-grid overlap of the atomic projectors and the wave
functions,

〈
p(a)
i

∣∣ψ 〉 ≡
∑
r f ∈X f

p(a)
i (r f )ψ (r f )dv f ,

can be written as a rough-grid overlap
〈
p(a)
i

∣∣ψ̄ 〉 =
∑
r∈Xr

p̄(a)
i (r)ψ̄ (r)dv, (C2)

where dv f and dv are the fine-grid and rough-grid volume
elements, and

p̄(a)
i (r) = dv f

dv

∑
r f ∈X f

p(a)
i (r f )B(r f , r). (C3)

The key practical aspect in the Ono-Hirose transformation
is the smoothing matrix, B(r f , r), connecting the fine and
rough grids [Eq. (C1)]. Typically a cubic-fit approach is used;
here we opted instead to use a spline fit matrix, which is
separable,

B(r f , r) = β(x f , x)β(y f , y)β(z f , z), (C4)

where the β matrices are obtained as explained below and
depend on the element only, not the specific atoms (the deriva-
tion is done for the case of equal grid spacings, dx = dy = dz,
and is trivially extended in the general case).

For each different element a small padding region is added
around the augmented region (typically of size rpad = 0.5 or 1
Bohr, the results do not change if either value is used). Then
the set of all x points within a distance ±r̄ from the nucleus,
where r̄ = raug + rpad, is labeled as {xi}i=1,...,n1d

. Here n1d �
2 r̄
dx and will be typically 6–14 for our grid parameters. The

set {xi}i=1,...,n1d
will be denoted as the rough-1d grid in the x

direction.
We define then a fine 1D grid of size n f = 1 + (n1d −

1)mf , where mf is adjusted so that the fine-grid spacing,
dx f = dx

mf
, is quite small, about 0.1−0.15 Bohr (thus typi-

cally n f ∼ 20–50). Further, we relabel β(x f , x) as a matrix,
β(i f , i),with 1 � i � n1d , 1 � i f � n f .

The β(i f , i) matrix is formally defined as the spline fit
coefficient matrix, i.e., given a 1D function g(xi ) on a rough
grid, then the fine-grid spline interpolation is

g(xi f ) =
∑
i

β(i f , i)g(xi ). (C5)

While it is possible to derive β(i f , i) formally, the simplest
approach is to use a set of δ functions. For example, to ob-
tain β(i f , i = 1) use a spline-fit subroutine with a g(xi ) = δ1,i

input vector, feed it to a spline-fit interpolation program, and
the resulting g(xi f ) fine-grid vector will be exactly β(i f , i) for
i = 1.

Given the β(i f , i) matrix [now again relabeled as β(x f , x)],
the next stage is to rotate each fine-grid function to the rough
grid, Eq. (C3). This is easily done in stages due to the sep-
arability of Eq. (C4), so that the total cost to transform each
function is only about n3

f n1d , which works out to be about a
one-time cost of 3000–100 000 operations for each atom and
for each projector, i.e., an overall negligibly small cost.

A side note: As it stands, Eq. (C4) and therefore the re-
mainder of our derivation only applies to orthogonal cells;
however, it is trivially generalized to other crystallographic
cells by replacing x, y, z by nonorthogonal coordinates that
are parallel to the unit-cell directions. Finally, we note that
there are alternatives to the Ono-Hirose technique, primarily
the mask function technique, where the radial functions are
smoothed [37].
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APPENDIX D: CHEBYSHEV-FILTERED
SUBSPACE ITERATION

The OPAW algorithm is general and can be applied with
any technique requiring an orthogonal Hamiltonian. Here we
combined our OPAW approach with the Chebyshev-filtered
subspace iteration (CheFS) technique [15], resulting in an
efficient DFT program (OPAW-DFT).

In CheFS, with each iteration a more refined subspace is
obtained, spanned by the lower energy orbitals. The Cheby-
shev filter

FJ (H̄ ) = CJ

[
H̄ − c+b

2 I
c−b

2

]

selectively enhances the occupied orbitals. Here CJ is a
Chebyshev polynomial of degree J (typically taken as J ≈ 20)
and its argument is a shifted Hamiltonian, where b is set to be
a little bit higher than LUMO energy and c is set to be higher
than the maximum eigenvalue of H̄ . The filter magnifies the
weight of the lower end of the spectrum (energies below b).
The number of states that the filter is operated on, labeled
M, needs to be somewhat larger than the number of occupied
molecular orbitals.

Obtaining the action of FJ (H̄ ) on a function involves
repeated applications of H̄ . In practice, we could either
apply FJ (H̄ ) directly or note that this is equivalent to
S1/2FJ (Ŝ−1H̃ )S−1/2. The latter is numerically slightly more
efficient, since it involves only one application of an S-type
projector; practically, to obtain Ŝ−1 one simply needs to re-
place the − 1

2 powers in Eq. (9) by −1. We verified that the
two techniques give numerically the same results. A sum-
mary of the structure of the OPAW-DFT algorithm is given
next.

APPENDIX E: SUMMARY OF ALGORITHM

For a given system, first
(1) At this stage a refers to each element in the system.

From a given data set of atomic φ
(a)
i , φ

(a)
i , p(a)

i (typically con-
tained in an “XML” file) construct the s(a)

i j matrix, as well as
several small-atom matrices needed for the PAW algorithm.
Construct a new set of orthogonal orbitals, η

(a)
i , that are a

linear combination of p(a)
i , and extract the o(a)

i coefficients
(Appendix A). Shift o(a)

i to be above −1 if necessary.
(2) Starting at this next stage, a refers to each atom sep-

arately. Use the Ono-Hirose transformation (Appendix C) to
form p̄(a)

i (r), each on a small rough grid around each atom.
Similarly form η̄

(a)
i , and orthogonalize them (Appendix C)

to form ζ̄
(a)
i (r) that are orthogonal on the grid. A new set of

ō(a)
i is then produced; again shift each ō(a)

i to be above −1 if
necessary.

Then start the SCF algorithm, presented first in terms of
the orthogonal Hamiltonian, H̄ . All expressions now refer to
the sparse 3D grid.

Pick a set of M random plane-wave orbitals, ψ̄mk(q). (See
Appendix F for details of the k-point sampling.) Orthogonal-
ize them and then do the following loop until convergence:

(1) Fourier transform the orbitals to the equivalent density-
based spatial grid, ψmk(r). Form ψ̃mk(r) = 〈r|S 1

2 |ψmk〉.
(2) From ψ̃mk(r), calculate the atomic density-type matri-

ces ρ
(a)
i j and construct the smooth density, DFT potential, and

the D(a)
i j terms. We adopted the routines of ABINIT for this

stage.
(3) Starting at the second iteration, we apply at this stage

a DIIS iteration on the DFT potential vKS (r) and potentially
also on the Di j terms.

(4) Apply the Jth-degree Chebyshev operator; symboli-
cally assign ψ̄mk ← FJ (H̄k)ψ̄mk . This could be done either
totally at the spatial grid level, ψ̄mk(r), or alternately, one
could at each stage (i.e., after each application of H̄k) transfer
back to the plane-wave grid, ψ̄mk(q), keeping only values of
q with energies below Ecutoff and then convert back to ψ̄mk(r).
There is no difference in the accuracy using either approach.

(5) At the end of the Chebyshev iteration, transfer to
the plane-wave grid, orthogonalize the resulting functions
ψ̄mk(q), rotate back to r space, diagonalize the M × M matrix
hkmm′ = 〈ψ̄mk|H̄k|ψ̄m′k〉 in the resulting basis of M vectors, and
rotate ψ̄mk(q) accordingly [with the resulting vectors again
labeled ψ̄mk(q)].

(6) Based on the resulting orbital energies, assign oc-
cupation numbers. Repeat the cycle until SCF convergence
(typically 10–20 times).

The algorithm is only slightly modified if we choose
to replace the orthogonal H̄k by (Ŝk)

−1
H̃k. In that case

the only modifications are that we directly iterate ψ̃mk ←
FJ [(Ŝk)

−1
H̃k]ψ̃mk, and at the end of each Chebyshev series

we need to use general orthogonalization, so 〈ψ̃mk|Ŝk|ψ̃m′k〉 =
δmm′ .

APPENDIX F: K-POINT SAMPLING

For periodic systems, the plane-wave wave functions are
given by Bloch waves, eik·rψ̄mk(r), where k samples the
first Brillouin zone, and ψ̄mk(r) are periodic. The modifi-
cations are therefore straightforward, exactly analogous to
PAW and NCPP: Given a periodic Bloch state ψ̄mk (r) on a
3D unit-cell grid, define a k-dependent Hamiltonian as H̄k =
(Ŝk)

− 1
2 H̃k(Ŝk)

− 1
2 , with (in the spatial basis)

(Ŝk)−
1
2 |ψ̄mk〉 = |ψ̄mk〉 + e−ik·r ∑

i,a

∣∣ζ̄ (a)
i

〉
ō(a)
i

〈
ζ̄

(a)
i

∣∣eik·rψ̄mk
〉
,

(F1)

i.e., in each application the ψ̄mk molecular orbital is multiplied
once by eik·r, the projection performed for all atoms, and the
resulting orbital is multiplied again by e−ik·r.

Within the H̃k operator, the Di j terms are similarly calcu-
lated, and the kinetic energy with the kinetic energy operator
obtained as usual by passing to Fourier space [i.e., produc-
ing ψ̄ jk(G)], multiplying by 1

2 (k + G)2, and transforming
back.
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